Pharmacology of the Respiratory Tract: Allergy and IgE

Tillie-Louise Hackett
Assistant Professor, Department of Pharmacology
James Hogg Research Centre
University of British Columbia
This lecture will provide an understanding of the role of immune system in the homeostasis of the human lung. The specific learning objectives will include:

- Define examples of biological and chemical exposures within the household
- Define the three factors important for the immune response
- Focus on the sentinel immune cell the mast cell
 - IgE production
 - IgE Structure
- Pharmacology of anti-IgE for the treatment of severe asthma
You breathe ~15 to 25 times per minute at rest.

The average adult at rest inhales and exhales 7 - 8 liters of air per minute.

That totals ~11,000 liters of air in a day of which 21% is oxygen.
Biological and Chemical Exposures within the Home

36% Pollen
31% Dust mites
33% Gas Molecules, Odors, Toxins

Germ Phase: Bacteria, Viruses, Fungi Pathogens Allergens
Gas Phase: Gas Molecules, Odors, Toxins
Solid Phase: Organic and Inorganic Particulate
Air Contaminants

• Specific Examples

• We breathe 100 bacteria every minute

• 150,000 contaminants are breathed in everyday
The lung facing an invasion by a pathogen can call on an array of powerful acute inflammatory responses;

Innate, non-immunological response

Acquired, specific Immune response
The Inflammatory Reaction

• Define: Events which occur in the tissue in response to an invading pathogen (disease-causing organism) or noxious stimuli.

• Red, swollen, hot, painful and alteration of function

• Outcome: Reactions are protective and result in healing with or without scarring, but if the pathogen/noxious agent persists chronic inflammation is deleterious.
The Inflammatory Reaction

• Since pathogens and stimuli come in many different forms – a wide variety of immune defenses are required.

• 1) **Exterior Barrier**

 - Size 5-7 uM
 - Beat in asymmetric pattern, synchronously
 - 15 cycles every second
 - Propels mucus 10 mm every min

Mucociliary clearance: Rapidly beating cilia and mucus
The Inflammatory Reaction

• Since pathogens and stimuli come in many different forms – a wide variety of immune defenses are required.

• 2) Recognition of pathogen or foreign material

Pattern Recognition Receptors

Pathogen-associated molecular patterns
The Inflammatory Reaction

- Since pathogens and stimuli come in many different forms – a wide variety of immune defenses are required.
- 3) Mounting a inflammatory reaction to eliminate it

1) Opsonification
 - Recognition by PARs

2) Phagocytosis
 --engulfed pathogen

3) Degradation
 -lysozymes in granules
The Mast Cell

- A resident immune cell of mucosal tissues

- Contain dense granules that contain
 - **Histamine** – Binds H1 histamine receptor on smooth muscle (contraction), endothelial cells (vasodilation)
 - **Heparin** - Anticoagulant
Mast Cell Degranulation

- Mast cells play a key role in the inflammatory process

- Mast cells can be stimulated to degranulate by:
 - Direct injury (e.g., physical or chemicals (opioids))
 - Cross-linking of immunoglobulin E (IgE) receptors
 - Complement proteins (C3a)
IgE Production

- Allergy is mediated by immunoglobulin E

The initial contact of an allergen within the mucosa *(local event)*

APCs present allergen to Th2 Cells which release IL-4

Stimulate B cells and subsequently plasma cells to produce IgE
Mast Cell IgE

- Allergy is mediated by immunoglobulin E

Variable Region – allows for movement and binding of antigens, determines specificity

Constant Region -
Binds to FcεR1 on mast cells

Antigen Binding Site –
Area where antigen is bound
Mast Cell IgE

- Mast cells express a high-affinity receptor **FcεR1** for the constant (Fc) region of IgE
- High affinity binding ($K_d \sim 10^{-10}$) of IgE is essentially irreversible
- Mast cells are coated with IgE
- IgE molecules are specific to one particular antigen
IgE and Allergy

- IgE level directly correlates with allergy
Uncontrolled Asthma

- Severe asthma has a major impact on health-care resource utilization
- Symptoms are not controlled by standard steroids (ICS) and SABA/LABA
Treatment with anti-IgE Therapy

• Omalizumab (Xolair) is a **humanized mAb** that targets IgE

Forms complexes with circulating IgE to form biologically inert complexes.

Humanized anti IgE was developed by grafting the **variable** sequence of a mouse antibody (binds human IgE) onto the **constant** IgG1 human framework (94% human, 5% murine).

This avoids clinical problems of **immunoreactivity**.
Treatment with anti-IgE Therapy

- Omalizumab (Xolair) dosing is effective against early and late phases of asthma
Safety of anti-IgE Therapy

• Dosing is based on the patients total IgE before treatment and body weight, administered by subcutaneous injection.

• Asthma Quality of Life Questionnaire baseline score for omalizumab of 0.91 compared with 0.46 for placebo patients ($P < 0.001$).

• The rate of anaphylactoid type reactions is 1 per 1000 in the clinical trial programmes.

• To date, more than 35 000 patients have been treated with omalizumab as it was first approved in the USA.